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a b s t r a c t

We propose a simple mathematical model by applying Michaelis–Menton equations of enzyme kinetics

to study the mutualistic interaction between the leaf cutter ant and its fungus garden at the early stage

of colony expansion. We derive sufficient conditions on the extinction and coexistence of these two

species. In addition, we give a region of initial condition that leads to the extinction of two species

when the model has an interior attractor. Our global analysis indicates that the division of labor by

worker ants and initial conditions are two important factors that determine whether leaf cutter ants’

colonies and their fungus garden can survive and grow or not. We validate the model by comparing

model simulations and data on fungal and ant colony growth rates under laboratory conditions. We

perform sensitive analysis of the model based on the experimental data to gain more biological insights

on ecological interactions between leaf-cutter ants and their fungus garden. Finally, we give conclu-

sions and discuss potential future work.

Published by Elsevier Ltd.
1. Introduction

Mutualistic interactions, although ubiquitous in nature, are not
well understood theoretically (Boucher, 1985; Hoeksema and
Bruna, 2000; Hoeksema and Schwartz, 2002; Holland et al., 2002;
Neuhauser and Fargione, 2004). Mathematical models of mutualism
that correspond well with natural observed population dynamics
have historically been difficult to formulate (Heithaus et al., 1980),
and there is little work in this area despite the frequency of
mutualism in nature (Holland and DeAngelis, 2010). The standard
approach to date for modeling two-species mutualism derives from
modified Lotka–Volterra equations, which have been applied to a
variety of community ecological interactions, including plant–polli-
nator interactions (Soberon and Martinez del Rio, 1981; Wells,
1983; Holland et al., 2002) and legume rhizobium interactions
(Vandermeer and Boucher, 1978; Simms and Taylor, 2002; West
et al., 2002). However, these models generally predict unstable
population dynamics that do not match the dynamics actually
observed in nature, particularly for obligate mutualism which tend
towards stability (Holland and DeAngelis, 2010). Recently, Holland
and DeAngelis (2010) proposed a general framework using a
consumer-resource approach to model the density-dependent
population dynamics of mutualism. Here we apply Holland and
Ltd.
DeAngelis’ approach to derive a new and simple mathematical
model of the population dynamics within colonies of the obligate
mutualism between leaf cutter ants (Acromyrmex versicolor) and
their fungus garden that can be validated by experimental data.

The mutualism between leafcutters and their fungus is particu-
larly interesting as an example of obligate mutualism. The colony
functions simultaneously at two trophic levels, as a population of
ants and a particular species of fungus that is dependent upon the
ants for survival and growth while serving as their primary nutrient
source. Growth of the fungus and the worker ant population is
mutually interdependent. The social organization of the colony is an
important contributor to this mutualism, because the colony faces a
trade-off in allocation of worker effort towards growth and main-
tenance of the fungus and other necessary behaviors, including
production and care of new offspring. This model is unique because
it considers this trade-off by using the division of labor within the
colony as a key explanatory variable. It also focuses on a critical
colony life stage, early colony growth, which has empirically been
demonstrated to be the most vulnerable life stage for the colony
(Clark and Jennifer, in preparation). Finally, it applies a population
dynamics framework to the problem by treating individual colonies
as distinct populations. Viewing the colony as a population is
relevant for models of growth in social insect colonies, because
(similar to other populations), offspring production is limited by
resource availability, including food and offspring care, which are a
function of population size. Growth is not limited by queen egg
production rate which is an order of magnitude higher than actual
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offspring production (Clark and Jennifer, in preparation). Incorpora-
tion of these behavioral, life-history, and organizational components
make the model generally relevant to contexts where starting
populations are small, and where there are trade-offs in how
partners participating in the mutualism should allocate effort
towards maintaining the mutualism versus other activities.

In this paper, we adapted a model for incipient colony growth
based on simple density-dependent ant growth and death rates
coupled with a fungus growth model which can be described by a
generalized Michaelis–Menton equation of enzyme kinetics. The
main purposes of this paper are three-fold:
1.
 Model functional response/numerical response based on eco-
logical properties of leaf cutter ants and their fungus garden.
2.
 Explore how the division of labor and initial conditions can be
key factors that determine the successful colony expansion at
its early stage.
3.
 Validate the model with experimental data and perform
sensitivity analysis to understand the influences of parameters
and initial condition on the model outcomes.

The rest of this paper is organized as follows: In Section 2, we
introduce the biological background of leaf-cutter ants and their
fungus garden, and we formulate a simple mathematical model
based on ecological assumptions that are supported by data and
literature. In Section 3, we perform mathematical analyses of the
proposed model: We derive the sufficient conditions for the
extinction and coexistence of the two species and give a region
of initial conditions that leads to the extinction of ants and fungus
with a model also containing an interior attractor (Theorems
3.1 and 3.2). These global analyses indicate that the division of
labor by ants and initial conditions are two important factors in
determining whether leaf cutter ants and their fungus garden can
coexist or not (Theorem 3.3 and Corollary 3.1). In Section 4, we
compare simulations to data on growth rates for laboratory leaf
cutter ant colonies, perform sensitivity analysis for all the para-
meters and initial conditions around the nominal value. The study
suggests not only that the fit of our model to data is significantly
accurate, but also that the model can provide parameter values
that are difficult to measure in the experiments. In Section 5, we
summarize our results and discuss future work. All proofs of
mathematical results presented in Section 3 are provided in the
last section.
2. Biological background and model formulation

This paper focuses on early colony growth in a species of
leafcutter ants. Leafcutters are fungus farmers that harvest leaves
and use them to cultivate a specific fungus that serves as the
colonies primary nutritional source. The fungus feeds the larvae,
and adult workers also feed off of it for maintenance. Thus, leaf-
cutter ants and their fungus garden form an obligate mutualistic
relationship, in which the increasing population of ants in the
colony is due to consumption of the fungus while the increasing
population of fungus is due to the agricultural services provided
by the ants. The interaction between ants and fungus can be
categorized as a consumer–resource mutualism according to
Holland and DeAngelis (2010).

Although Acromyrmex colonies grow to several thousand work-
ers, we focus on the early growth stage from first worker produc-
tion to about 29 weeks of age, with worker populations of
approximately 200. The relationship between fungal growth and
worker production at this stage is less stable than at larger colony
sizes (Clark and Jennifer, in preparation), and colony deaths are
common even in conditions of ad libitum food availability. As a
practical consideration for model validation, colonies at this stage
can be meticulously tracked for changes in fungal and worker mass
or number as well as for brood production and division of labor,
measured as task performance by each worker. New leafcutter
colonies are started when mature colonies produce new winged
females, queens, which mate with males and then excavate new
nests in the soil. Leafcutter ant queens then expel a fungus pellet
carried from their natal nest and lay eggs on the fungus. They forage
for leaves to expand the fungus garden, which they feed to their
brood. The first workers emerge 6–9 weeks after eggs are laid
(Hölldobler and Wilson, 1994). These workers enlarge the nest, feed
the queen and larvae, tend to the fungus garden and hunt for leaves
for the fungus substrate. Once workers emerge, the queen’s only
task is egg production. This transition begins the colony’s ergo-
nomic growth phase, which may last for years until the colony
matures (Oster and Wilson, 1979).

Division of labor, the allocation of workers to different tasks, is
a key feature of social groups, and addresses how individual
worker behavior integrates into colony-level task organization
(Hölldobler and Wilson, 1990; Beshers and Fewell, 2001).
Although the importance of division of labor in colony functioning
is widely recognized, models of division of labor have not
previously been integrated with effects on colony growth. More
broadly, the role of division of labor in the leafcutter–fungus
mutualism reflects the trade-offs that species must make in
ecological mutualism between behaviors promoting the mutual-
ism versus other maintenance behaviors.

Leafcutter colonies face a trade-off in allocation to different
tasks affecting fungal growth, brood production and colony
maintenance. This trade-off is particularly important at early
growth stages, when the number of workers is low relative to
the number of tasks and/or total work needed to be performed
(Brown et al., 2006; Jeanson et al., 2007). The workers of
established leafcutter colonies may perform up to 20–30 tasks
(Wilson, 1983). Incipient colonies perform considerably fewer; of
these, feeding fungus to larvae, tending the fungus garden, and
collecting leaves for the fungus substrate require the bulk of
worker activity budgets, which translate into energy expenditure
of workers (Julian and Fewell, 2004). These tasks can be general-
ized into two categories: energy or time spent outside the colony
for collecting and processing leaves and energy or time spent
inside the colony for tending and cleaning the fungus garden and
taking care of queens and larvae. We quantify time or energy
expenditure for these two category tasks as the biomass of ant as
our modeling approach.

Our study in this section aims to model the obligate mutual-
ism interaction between leaf cutter ants and fungus at the
incipient stage of the colony: From the time of first brood
production to about 29 weeks of age. Let A(t) be the total biomass
of ants including workers, larvae, pupae and eggs at time t, where
pA (0opo1) is the biomass of workers and ð1�pÞA is the biomass
of the remaining ants. Let F(t) be the total biomass of the fungus
at time t. Ecological assumptions of the interaction between
workers and fungus at the early stage of colony are as follows:
A1:
 Assume that each worker has a fixed ratio of the energy
spent outside the colony to the energy spent inside the
colony which is q=ð1�qÞ. This assumption is equivalent to a
situation where workers with a population of qpA (0oqo1)
collect leaves, and the rest of workers ð1�qÞpA tend the
fungus garden and take care of queen ants as well as larvae.
A2:
 The ants’ population increases as the queen, larvae and adult
ants feed on fungus. Thus we can assume that the numerical
response function for ants is the Holling Type I function, i.e.,
fungus biomass F multiplied by a constant number ra. In
addition, we assume that ants suffer from density-dependent



Table 1
Biological meanings of parameters in the system (1)–(2).

Parameters Biological meaning

ra Maximum growth rate of ants

rf Maximum growth rate of fungus

c Conversion rate between fungus and ants

da Death rate of ants

df Death rate of fungus

p Proportion of ants that are workers

q Proportion of workers that take care of fungus

b Half-saturation constant
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mortality due to energy consumed by foraging for leaves and
taking care of the larvae and fungus garden as well as its
multiple life stages, which will modify population growth
through density-dependent self-limitation (Holland and
DeAngelis, 2010). Therefore, the population dynamics of ants
can be described as follows:

dA

dt
¼ ðraF�daAÞA ð1Þ

where ra is a parameter that measures the maximum growth
rate of ants and da is the mortality rate of ants.
A3:
 The leaf-cutter ant mutualism is unique because the workers
perform specific tasks to maintain the life of the fungus. The
population of fungus can increase only if: there are qpA

workers bringing back and processing leaves for the fungus;
there are ð1�qÞpA workers taking care of the fungus garden
and there is healthy fungus F in the garden. Thus, fungus
growth is a product of two different sets of tasks performed by
workers which can be represented by the following diagram:

q p A|fflffl{zfflffl}
energy from workers collecting and processing leaves

þ ð1�qÞpA|fflfflfflfflffl{zfflfflfflfflffl}
energy from workers tending fungus

þF-Fþnew fungus

Therefore, by applying the concept of the kinetics of functional
response (Real, 1977) we can assume that the numerical
response of fungus to ants is a Holling Type III function

p2qð1�qÞA2

bþp2qð1�qÞA2

where b is the half-saturation constant. The population of
fungus decreases due to the consumption by ants and its
mortality. Here, we assume that the fungus suffers from
density-dependent mortality due to self-limiting (Holland
and DeAngelis, 2010). Thus, the population dynamics of
fungus can be described as follows:

dF

dt
¼

rf p2qð1�qÞA2

bþp2qð1�qÞA2
�df F�racA

 !
F ð2Þ

where rf is the maximum growth rate of the fungus; c is the
conversion rate between fungus and ants and df is the
mortality rate of the fungus. See Table 1 for the biological
meanings of the completed list of parameters.
Note: Holling (1959) and Murdoch (1969) have discussed the
application of a type III functional response associated with
learning processes of predators being able to adjust their
feeding rate actively based on the quantity and density of
available prey. An ant colony similarly changes allocation of
workers to different tasks as needs change with changing
colony size (Hölldobler and Wilson, 1990). In this way the ants
actively modify their time expenditure and task allocation just
as predators actively modify their feeding behaviors.
3. Mathematical analysis
Let a¼ p2qð1�qÞ and rc ¼ cra, then based on the assumptions
listed in Section 2, an interaction between ants and fungus at the
early stage of colony may be modeled by the following differential
equation:

dA

dt
¼ ðraF�daAÞA ð3Þ

dF

dt
¼

rf aA2

bþaA2
�df F�rcA

 !
F ð4Þ

where a can be considered as a parameter measuring the division
of labor in the colony of ants and other parameters are strictly
positive. Since

a¼ p2qð1�qÞ, pA ½0;1� and qA ½0;1�,

therefore,

aA ½0,0:25�

where a achieves its maximum 0.25 when p¼ 1,q¼ 1=2. In reality,
p is always less than 1 since the biomass of queen and other stages
of ants (i.e., larvae, pupae) other than adult ants is greater than 0.
Thus, a is strictly less than 0.25 in the real biological system.

In this section, we focus on global dynamics of the proposed
model (3)–(4) to explore the following ecological questions:
1.
 What is the pattern of population dynamics of leaf-cutter ants
and fungus at the early stage of colony expansion?
2.
 What are the main factors determined the coexistence of ants
and fungus?

To answer these questions, we first show the following lemma:

Lemma 3.1. The system (3)–(4) is positively invariant and bounded

in R2
þ . In particular, if both Að0Þ40 and Fð0Þ40, then AðtÞ40 and

FðtÞ40 for all t40.

Note: Lemma 3.1 indicates that the population of leaf cutter
ants and their fungus is bounded due to the limited resource in

nature. Let R̊
2

þ ¼ fðA,FÞA R2
þ : A40,F40g, then from Lemma 3.1,

we know that ðAð0Þ,Fð0ÞÞAR̊
2

þ implies that ðAðtÞ,FðtÞÞAR̊
2

þ for all

t40.

Proposition 3.1. For any initial condition taken in R2
þ , the trajec-

tory of the system (3)–(4) is converging to an equilibrium point.

Note: Proposition 3.1 implies that the population dynamics of leaf
cutter ants and their fungus is simple in the sense that they do not
have a limit cycle, i.e., if time t is large enough, then the population of
leaf cutter ants and their fungus approach to some fixed point.
Therefore, the short time dynamics of leaf cutter ants and their
fungus garden is more important since it can give us more informa-
tion on the dynamics of the interaction between ants and fungus.
This answers our first question listed at the beginning of this section.

Proposition 3.2. If ao4bððrcraþdf daÞ=rarf Þ
2, then the system

(3)–(4) has only trivial equilibrium (0,0); while if a¼ 4bððrcraþ

df daÞ=rarf Þ
2, then the system (3)–(4) has the only positive equilibria

ðAi,FiÞ ¼
rf ra

2ðrcraþdf daÞ
,

rf rada

2raðrcraþdf daÞ

� �
in addition to (0,0); while if a44bððrcraþdf daÞ=rarf Þ

2, then

the system (3)–(4) has the following two positive equilibria in

addition to (0,0):

ðAi1,Fi1Þ ¼ Ai1,
da

ra
Ai1

� �
and ðAi2,Fi2Þ ¼ Ai2,

da

ra
Ai2

� �
ð5Þ
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where

Ai1 ¼
rf ra

2ðrcraþdf daÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rf ra

2 rcraþdf da

� � !2

�
b

a

vuut

Ai2 ¼
rf ra

2ðrcraþdf daÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rf ra

2ðrcraþdf daÞ

� �2

�
b

a

s

Note: Recall that a is a parameter measuring the division of labor
of workers. Proposition 3.2 implies that if a is too small, i.e., the ratio
of adult ants that take care of fungus to adult ants that forage for
leaves, q=ð1�qÞ, is too small, then the system (3)–(4) has only trivial
equilibrium point (0,0). This leads to the following theorem:

Theorem 3.1 (Extinction of two species). If ao4bððrcraþdf daÞ=

rarf Þ
2, then the system (3)–(4) has global stability at (0,0).

Biological implications: Theorem 3.1 indicates that division of
labor is an important factor determining whether the early colony
stage of leaf cutter ants can survive or not. Recall that the
proportion of ants performing a task is essentially equivalent to
energy devoted to a given task. In the case that the population of
adult ants is too small, i.e., q is too small, or the population of adult
ants foraging for food is too small, i.e., ð1�qÞ is too small, then
aoqð1�qÞ will be too small such that ao4bððrcraþdf daÞ= rarf Þ

2.
This leads to the extinction of both ants and fungus.

In order to investigate the biological conditions when leaf cutter
ants and their fungus can coexist, we have the following theorem:

Theorem 3.2 (Coexistence of two species). If a44bððrcraþdf daÞ=

rarf Þ
2, then the system (3)–(4) has two positive equilibria ðAi1,Fi1Þ

and ðAi2,Fi2Þ where ðAi1,Fi1Þ is always unstable and ðAi2,Fi2Þ is always

locally asymptotically stable.

Biological implications: Theorem 3.2 implies that if allocation of
workers to different tasks is in a good range, i.e., a44b

ððrcraþdf daÞ=rarf Þ
2, then both leaf cutter ants and their fungus

garden can coexist, because the system (3)–(4) has a locally
asymptotically stable interior equilibrium ðAi2,Fi2Þ. On the other
hand, for a fixed value of a, if da,rc and da=ra are small enough,
then a44bððrcraþdf daÞ=rarf Þ

2 holds, thus two species can coexist.
Now the more interesting question is whether relative allocation
among tasks is the only factor determining whether ants and
fungus can coexist. The next theorem will answer this question.

Theorem 3.3 (Basin of attraction of (0,0)). The trivial equilibrium

(0,0) is always locally asymptotically stable if aa4bððrcraþdf daÞ=

rarf Þ
2. Moreover, if a44bððrcraþdf daÞ=rarf Þ

2, then the basin of

attraction of (0,0) contains in the region Bð0;0Þ\SðAi1 ,Fi1Þ where

Bð0;0Þ ¼ ðA,FÞAR̊
2

þ :
rf aA2

df ðbþaA2
Þ
�

rcA

df
rFoFi1

( )

and

SðAi1 ,Fi1Þ ¼ ðA,FÞAR̊
2

þ : lim
t-1
ðAðtÞ,FðtÞÞ ¼ ðAi1,Fi1Þ

� 	
:

A direct corollary of Proposition 3.1, Theorems 3.2 and 3.3 is as
follows:

Corollary 3.1. If a44bððrcraþdf daÞ=rarf Þ
2, then the system (3)–(4)

has two attractors

ð0;0Þ and ðAi2,Fi2Þ:

If the initial condition ðAð0Þ,Fð0ÞÞ is too small such that it contained in

Bð0;0Þ\SðAi1 ,Fi1Þ, then

lim
t-1
ðAðtÞ,FðtÞÞ ¼ ð0;0Þ;
while the initial condition ðAð0Þ,Fð0ÞÞ is large enough, then

lim
t-1
ðAðtÞ,FðtÞÞ ¼ ðAi2,Fi2Þ:

Biological implications: Theorem 3.3 and Corollary 3.1 suggest
that the initial population of leaf cutter ants and fungus is another
important factor that determines whether ants and fungus can
coexist or not. If initial population is contained in Bð0;0Þ\SðAi1 ,Fi1Þ,
then both ants and fungus will go extinct even if the division of
labor is in a good range, i.e., a44bððrcraþdf daÞ=rarf Þ

2.
Our analysis performed in Proposition 3.1 indicates that the

population pattern of ants and fungus are relatively simple,
i.e., there are no fluctuations and converge to either the extinction
state ð0;0Þ or the coexistence state ðAi2,Fi2Þ. Theorem 3.1 suggests
that both ants and fungus go to extinction if the division of labor by
ants is too small, i.e., ao4bððrcraþdf daÞ=rarf Þ

2. Theorems 3.2, 3.3
and Corollary 3.1 suggest that the division of labor by ants and
initial conditions are two important factors in determining
whether leaf cutter ants and their fungus garden can coexist or
not. This implies that the coexistence of two species needs
two conditions: 1. the division of labor by ants is large enough,
i.e., a44bððrcraþdf daÞ=rarf Þ

2; 2. the initial population of ants and
fungus are large enough, e.g., Að0Þ4Ai1,Fð0Þ4Fi1. All the detailed
proofs of these analytical results are presented in Section 6.
4. Numerical simulations, data and sensitive analysis

In this section, we validate our model (3)–(4) by performing
numerical simulations, sensitivity analysis and parameter estima-
tions based on the experiment data. The numerical simulations fit
the data very well (see Figs. 1 and 2), which suggests that our
model (3)–(4) is well defined. Sensitivity analysis around these
chosen parameter values provides information on the governing
factors for the ecological process modeled by (3)–(4).

4.1. Numerical simulations and experimental data

In this subsection, we compare the numerical simulations of
the model (3)–(4) by using parameter values in certain intervals
(see these values in Table 2). These intervals are obtained from
the approximations according to data and literature (Brown et al.,
2006; Clark and Fewell, in preparation). Measurements of
leafcutter fungus and worker population growth, and of refuse
production, were performed in the Fewell lab at Arizona State
University from 2005 to 2007. Briefly, estimates of the maximum
growth rates of the ants and fungus came from a six-month
observational study of leafcutter colonies that were established
and maintained in the laboratory (n¼11), where the size (mass)
of worker populations and fungus gardens were estimated once a
week using noninvasive methods that correspond well with the
actual worker population mass and fungus garden mass. Esti-
mates of fungus death rates came from a two-month study of 21
colonies reared under the same conditions. Colony waste material
(dead fungus and workers) was collected, sorted, dried and
weighed to determine the rate at which dead fungus material
was produced. Table 2 lists the range of parameters and the
specific values (i.e., ra ¼ 0:1, rf ¼ 0:7, da ¼ 0:1,df ¼ 0:2, b¼ 0:002,
rc ¼ 0:0045, a¼ 0:2,Að6Þ ¼ 0:05,Fð6Þ ¼ 0:3) that generate dashed
lines in Figs. 1 and 2 from weeks 6 to 29. Other values in the
interval can generate similar dynamics as the chosen values,
but the chosen values were selected because they match the
empirical data well.

Figs. 1 and 2 provide the comparison between ecological data
(solid lines with error bars) and simulations (dashed lines)
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generated by the model (3)–(4) when ra ¼ 0:1, rf ¼ 0:7, da ¼ 0:1,
df ¼ 0:2, b¼ 0:002, rc ¼ 0:0045,a¼ 0:2, Að6Þ ¼ 0:05, Fð6Þ ¼ 0:3. The
fitting of the model to the data for the ants and fungus population
is evident from these two figures. The comparison between
simulations generated by the model (3)–(4) and data suggests
not only that the fit of the model to data is accurate but also that
parameters match with expected values for growth, death, and
division of labor. A recent experiment study by Clark and Fewell
(in preparation) on leaf-cutter ants shows that the parameter
values for ra,rf ,df that generate Figs. 1 and 2 are very close to
actual data. The initial condition used for generating Figs. 1 and 2
is the mean value from the experimental data by Clark et al.
(preprint). A study by Brown et al. (2006) on mortality rates of
leaf cutter ants and division of labor suggests that the death rate
matches with the parameter da. Notice that the values of para-
meters such as rc ,b are difficult to measure in the experiments.
The good fit of the model to data (see Figs. 1 and 2) generated by
the values listed in Table 2 provides an approximation of rc and b.
The parameter df is difficult to measure experimentally because of
the efficiency of the mutualistic relationship between the ants



Table 2
Intervals and chosen values of parameters in the system (3)–(4).

Parameters Intervals Chosen values

ra: Maximum growth rate of ants (0.05, 0.3) 0.1

rf: Maximum growth rate of fungus (0.01,1) 0.7

rc: Conversion rate between fungus and ants (0.001,10) 0.0045

da: Death rate of ants (0.001,1) 0.1

df: Death rate of fungus (0.001,1) 0.2

b: Half-saturation constant (0.001,10) 0.002

a: Measurement of the division of labor (0, 0.25) 0.2

Að6Þ:Biomass of ants at week 6 (0.001, 0.1) 0.05

Fð6Þ:Biomass of ants at week 6 (0.001, 1) 0.3
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and fungus. In the next subsection, we will examine the sensitiv-
ity of these parameter values and the initial condition.

The detailed information of Figs. 1 and 2 are presented as
follows:
1.
 In Fig. 1, the left figure is the biomass of ants vs. time in weeks
and the right figure is the biomass of fungus vs. time in weeks.
By comparison, we can see that the simulations fit the data
very well, especially for biomass of fungus. Overall, the
simulation of the biomass of ants is larger than the experi-
mental data (the right figure). This is expected, because Eq. (3)
models the biomass of all ants including the queen, eggs,
larvae, pupae and workers, while the experiment only mea-
sures the biomass of workers. In addition, both data and
simulations suggest that ants have exponential growth while
the fungus has linear-like growth from weeks 6 to 29. Recall
that our focus is the ergonomic growth stage of the ants which
starts when the first workers appear. The exponential growth
of ants at this growth stage confirms the study by Oster and
Wilson (1979).
2.
 The right figure of Fig. 2 represents log10ðthe biomass
of antsþ1Þ vs. log10ðthe biomass of fungusþ1Þ, which pro-
vides the information on the relationship between the growth
rate of ants and the growth rate of fungus. Simulations fit data
extremely well. Both suggest that the growth rate of ants and
fungus increase over time, and the growth rate of ants
increases faster than fungus, which may be caused by changes
in the efficiency of the conversion between ants and fungus at
the early colony stage.
The left figure of Fig. 2 is the ratio of log10ðthe biomass
of antsþ1Þ to log10ðthe biomass of fungusþ1Þ vs. time in
weeks, which provides information on the relative growth
rate of ants to fungus: the simulation fits data very well from
weeks 10 to 29 but shows some inconsistency between the
data and the model fitting during weeks 6 to 9. In this case the
model is a more accurate descriptor of population dynamics
than the collected data because the biomass of the ants during
this time consists almost entirely of immature workers or ants
in the larvae/pupae stage. The data do not account for this ant
biomass and thus, from weeks 6 to 9 the ant population may
be largely underrepresented. This under-representation leads
to an increase in the slope of data when the actual result
should be closer to the model output during this time. Thus,
the possible explanations for the inconsistency between the
data and the model fitting during weeks 6–9 can be summar-
ized as follows: 1. Eq. (3) models the biomass of all ants while
the experiment only measures the biomass of workers; thus,
the model (3)–(4) should generate the larger ratio of log10

ðthe biomass of antsþ1Þ to log10ðthe biomass of fungusþ1Þ;
2. For the first few weeks (weeks 6–9), the real population
dynamics of ants and fungus are highly unstable and may
have very different ecological properties than our model
assumptions. Stochasticity and multiple life stages of leaf
cutter ants (e.g., eggs, larvae, pupae) may be considered in
future models.
4.2. Implications from sensitivity analysis and parameter

estimations

Input factors for our mathematical model (3)–(4) consist of
seven parameters and two initial conditions for independent and
dependent variables of the model. Because of natural variation,
error in measurements, or simply a lack of current techniques to
measure some parameters, it is necessary to perform sensitivity
analysis to identify critical inputs (parameters and initial condi-
tions) of our model and quantifying how input uncertainty
impacts model outcomes (i.e., the dynamics of the ants and
fungus biomass of ants AðtÞ,FðtÞ). In this subsection, sensitivity
measure of the model (3)–(4) is computed numerically by
performing multiple simulations varying input factors around
the nominal value listed in Table 2.

The sensitivity of all parameters and initial conditions around
ra ¼ 0:1, rf ¼ 0:7, da ¼ 0:1, df ¼ 0:2,b¼ 0:002, rc ¼ 0:0045, a¼ 0:2,
Að6Þ ¼ 0:05,Fð6Þ ¼ 0:3 from weeks 6 to 29 are shown in Figs. 3 and
4 (see Appendix). Sensitivity analysis for parameters and initial
conditions were performed using an extension of the MATLAB
function ODE23tb, a stiff solver for ordinary differential equa-
tions. The algorithms used in this instance are the internal
numerical differentiation and iterative approximation based on
directional derivative methods described by Bock (1981) and
Maly and Petzold (1996) respectively. The output of the function
is similar to that of ODE23tb with an additional array containing
the derivatives (sensitivities) of the solution with respect to a
given parameter vector. Brief summary on sensitivity results is as
follows (the detailed information and figures on sensitivity results
are presented in Appendix):
1.
 The effects of all the parameters are strictly cumulative. The
effects of each parameter at the beginning of the colony
are relatively small. As time progresses the parameters have
a much greater effect on the model, most of them having
their largest effect on the biomass of fungus at around
week 25.
2.
 There is a time shift between the effect on the biomass of ants
and the biomass of fungus: the largest effect on the biomass of
fungus is always earlier than the largest effect on the biomass
of ant.
3.
 All the parameters have larger effects on the biomass of fungus
than on the biomass of ants.
4.
 The growth parameters ra,rf , the division of labor parameter a

and the initial conditions Að6Þ,Fð6Þ have positive effects on the
biomass of ants and fungus while the death parameters da,df ,
the conversion rate rc and the half-saturation constant b have
negative effects on the biomass of ants and fungus.
5.
 Among all these parameters and the initial conditions, the
parameter b has the largest sensitivity and the conversion
rate rc, the death rate of ants da and the initial value of fungus
Fð6Þ have relative small sensitivity to the output of the model.

In addition, we use nonlinear grey-box models (System Iden-
tification Toolbox provided in MATLAB) to perform parameter
estimations based on experimental data by fixing the estimated
interval of a to be ð0,0:25Þ and the estimated intervals of other
parameters to be ð0,1Þ. The estimated values can be varied
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depending on the initial guesses and the estimated intervals.
Parameter estimations suggest follows:
1.
 The different initial guess values will give different estimated
values. This may be caused by the fact that the model (3)–(4)
has multiple attractors.
2.
 The estimated values of rc and da are both extremely small. In
addition, the smaller the initial guesses of da and rc, the smaller
the estimated values of these parameters. This may suggest
that rc and da have little effect on the population dynamics of
ants and fungus at the early colony stage, which has been
confirmed by their small sensitivity (see Fig. 3(b) and (c)).
3.
 The standard deviations of estimated a,b,rc ,da are extremely
large, which may be caused by two factors: 1. These para-
meters are not independent; 2. the extremely small value of
da and rc.

Thus the population dynamics of ants and fungus may be highly
unstable at the early stage of colony development, as supported
by the empirical data (Clark and Fewell, in preparation). Notice
that collected data is from the successful colonies only. The
extremely small estimated value of rc and da may suggest that
the conversion rate between ants and fungus and the death rate
of ants are not as important as other factors such as the growth
rate parameters ra,rf and the death rate of fungus df. Possibly, a
multiple-stage model that includes the stages of eggs, larvae,
pupae or even a stochastic model should be introduced in order to
get a better understanding of the detailed ecological processes.
5. Discussion

The traditional two-species mutualism models for plant–
pollinator interactions (Soberon and Martinez del Rio, 1981;
Wells, 1983; Holland et al., 2002) and legume rhizobium inter-
actions (Vandermeer and Boucher, 1978; Simms and Taylor,
2002; West et al., 2002) are modified from Lotka–Volterra
equations, which do not match the dynamics actually observed
in nature (Holland and DeAngelis, 2010). In addition, these
models make a general assumption that all individuals within
the growing population are equivalent, which are less useful for
predicting events at small scales like the population dynamics of
leaf-cutter ants and their fungus garden at the early colony
expansion, where internal organizational and demographic fac-
tors may play a larger role in determining the population growth.
Thus, we need a new approach to study the mutualism interaction
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between leaf-cutter ants and their fungus garden at the ergo-
nomic growth stage starting from when the first brood of ant
workers reaches the adult stage.

The interaction between ants and fungus can be categorized as
a consumer–resource mutualism according to Holland and
DeAngelis’s (2010) study. In this paper, we apply Holland and
DeAngelis’ approach to derive a new and simple mathematical
model (3)–(4) of the population dynamics of leaf cutter ants and
their fungus garden at the early colony stage by applying
Michaelis–Menton equations of enzyme kinetics. Our model not
only includes the division of labor within the colony and the
particular colony stage; incorporation of these behavioral and
life-history components make it distinct from other obligate
mutualism models such as plant–pollinator interactions but also
can be validated by the experiment data. The unique features of
model (3)–(4) can be summarized as follows:
1.
 The net benefit of the obligate fungus to leaf cutter ants is
determined by the difference between the overall performance
of collecting leaves and cultivating fungus by worker ants and
the amount of fungus eaten by queen, larvae and workers;
while the net benefit of obligate ants to fungus is determined
by the difference between the amount of consumed fungus
and the mortality rate due to the energy spent on collecting
leaves and cultivating fungus.
2.
 The division of labor of leaf cutter ants: workers perform
different tasks to maintain their fungus gardens. This feature
allows us to apply the concept of the kinetics of functional
response to model the numerical functional response of
fungus.

The mathematical analysis (Theorems 3.1–3.3 and Corollary 3.1)
of (3)–(4) gives a completed picture of the global dynamics of the
interactions between leaf cutter ants and their fungus garden. These
theoretical results suggests that:
1.
 The division of labor of ants can determine whether leaf cutter
ants and their fungus garden are able to coexist.
2.
 When the division of labor is in a good range, the initial
populations of leaf cutter ants and fungus are needed to be
larger than some threshold in order to coexist.

We validated the model (3)–(4) by using empirical data. The
comparison between model simulations and data supports the
fact that (3)–(4) is well defined for modeling the population
dynamics of the leaf cutter ants and fungus during the incipient
colony stage (the early ergonomic growth stage). The good fit
between the model and data also provides us an approximation of
the values of difficult measured parameters such as the conver-
sion rate between fungus and ants rc and the half-saturation
constant b. Sensitivity analysis implies b has the largest effect on
the output of the model. Sensitivity analysis suggests that the
growth rate parameters ra,rf and the death rate of fungus df are
important factors for determining the population dynamics for
the successful colony.

The inconsistency between the data and the model fitting
during weeks 6–9 (Fig. 2) suggests that a more realistic and
detailed model is needed during this period. Thus, consideration
of multiple life cycle stages, including eggs, larvae and pupae, or
even stochasticity should be included in further modeling work.
In addition, for future experiments, the biomass of larvae and
pupae should be measured as well. These different life cycle
stages are likely to represent a larger proportion of the total ant
biomass in early stages of colony growth and additionally likely
have more variance. This could be our future work.
Overall, the present model provides methods for understand-
ing and predicting mutualism growth dynamics in systems at
small population sizes. Specifically, we show that a simple form of
behavioral variation – classified here in terms of the division of
labor – can play a key role in determining the system’s outcome,
whether stable growth or collapse of the system. Further, we
found that the initial relative population sizes of the two mutu-
alists are critical for successful establishment and growth.

In contrast, many studies of mutualistic interactions focus on
population dynamics in large, or well-established populations.
These sorts of populations are unlikely to reveal much about how
such stable mutualisms arise or become established in new
environments. The current model should be useful for predicting
constraints on the evolution of mutualisms in certain systems,
particularly those that experience population bottlenecks, followed
by periods of rapid growth. These population characteristics are
typical for digestive endosymbiotic bacteria that must be transferred
from host mother to offspring (Hosokawa et al., 2007), and in
situations where novel nutritional mutualisms arise and subsequently
spread through a population (Hillesland and Stahl, 2010). It is much
more challenging to empirically quantify establishment and
exchanges between partners in such mutualisms; hopefully, the
current work provides a framework for considering relevant factors
for the initiation and growth of such systems.
6. Proof
Proof of Lemma 3.1. Notice that Að0Þ ¼ 0 then AðtÞ ¼ 0 for all
tZ0; Fð0Þ ¼ 0 then FðtÞ ¼ 0 for all tZ0. Therefore,
1.
 If Að0Þ ¼ 0 and Fð0Þ ¼ 0, then ðAðtÞ,FðtÞÞ ¼ ð0;0Þ for all tZ0.

2.
 If Að0Þ ¼ 0 and Fð0Þ40, then

dF

dt
¼

rf aA2

bþaA2
�df F�rcA

 !
F ¼�df F2o0:

Thus, lim
t-1

FðtÞ ¼ lim
t-1

Fð0Þ=ð1þdf tÞ ¼ 0.
3.
 If Fð0Þ ¼ 0 and Að0Þ40, then

dA

dt
¼ ðraF�daAÞA¼�daA2o0:

Thus, lim
t-1

AðtÞ ¼ lim
t-1

Að0Þ=ð1þdatÞ ¼ 0.
If Að0Þ40 and Fð0Þ40, then due to the continuity of the system, it
is impossible for either A(t) or F(t) to drop below 0. Thus, for any
Að0ÞZ0,Fð0ÞZ0, we have AðtÞZ0 and FðtÞZ0 for all tZ0. Now
assume Að0ÞZ0,Fð0ÞZ0, then according to the expression of
dFðtÞ=dt, we have

dF

dt
¼

rf aA2

bþaA2
�df F�rcA

 !
Fr ðrf�df FÞF:

Thus, lim supt-1 FðtÞrrf =df . This indicates that for any e40,
there exists T large enough, such that

FðtÞo
rf

df
þe for all t4T:

Therefore, we have

dA

dt
¼ ðraF�daAÞAr ra

rf

df
þe

� �
�daA

� �
A for all t4T:

Since e can be arbitrarily small, thus lim supt-1 AðtÞrrarf =dadf .
Therefore, we have shown that the system (3)–(4) is positively
invariant and bounded in R2

þ . More specifically, the compact set
½0,rarf =dadf � � ½0,rf =df � attracts all points in R2

þ .
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Moreover, if both Að0Þ40 and Fð0Þ40, then we have follows:

dA

dt
¼ ðraF�daAÞAZ�daA2 ) AðtÞZ

Að0Þ

1þdat
40

dF

dt
¼

rf aA2

bþaA2
�df F�rcA

 !
FZ�df F2 ) FðtÞZ

Fð0Þ

1þdf t
40

Therefore, if both Að0Þ40 and Fð0Þ40, then AðtÞ40 and FðtÞ40

for all t40. &

Proof of Proposition 3.1. By Poincaré–Bendixson Theorem
(Guckenheimer and Holmes, 1983), the omega limit set of the
system (3)–(4) is either a fixed point or a limit cycle. If there
exists a function BðA,FÞ : R2

þ-Rþ , such that

@

@A
½BðA,FÞðraF�daAÞA�þ

@

@F
BðA,FÞ

rf aA2

bþaA2
�df F�rcA

 !
F

" #
o0,

then we can use Dulac’s criterion (Guckenheimer and Holmes,
1983) to exclude the existence of a limit cycle for the system
(3)–(4). Let BðA,FÞ ¼ 1=AF. Then,

@

@A
½BðA,FÞðraF�daAÞA�þ

@

@F
BðA,FÞ

rf aA2

bþaA2
�df F�rcA

 !
F

" #
¼�

da

F
�

df

A
o0

holds for any ðAð0Þ,Fð0ÞÞAR̊
2

þ . Therefore, by Dulac’s criterion, the
system (3)–(4) has no limit cycle, i.e., any trajectory of (3)–(4)
starting with a non-negative initial condition converges to a fixed
point. &

Proof of Proposition 3.2. It is easy to see that (0,0) is always an
equilibrium of the system (3)–(4). The nullclines of (3)–(4) can be
founded as

dA

dt
¼ 0) A¼ 0 or F ¼

da

ra
A

dF

dt
¼ 0) F ¼ 0 or F ¼

rf aA2

df ðbþaA2
Þ
�

rc

df
A

By solving rf aA2=df ðbþaA2
Þ�ðrc=df ÞA¼ ðda=raÞA for A, we have the

following two cases:
1.
 If a44bððrcraþdf daÞ=rarf Þ
2, then by simple algebraic calcula-

tions, there are the following two positive solutions of
rf aA2=df ðbþaA2

Þ�ðrc=df ÞA¼ ðda=raÞA:

Ai1 ¼
rf ra

2ðrcraþdf daÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rf ra

2ðrcraþdf daÞ

� �2

�
b

a

s

Ai2 ¼
rf ra

2ðrcraþdf daÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rf ra

2ðrcraþdf daÞ

� �2

�
b

a

s

Thus, the two interior equilibria are

ðAi1,Fi1Þ ¼ Ai1,
da

ra
Ai1

� �
and ðAi2,Fi2Þ ¼ Ai2,

da

ra
Ai2

� �
:

2.
 If a¼ 4bððrcraþdf daÞ=rarf Þ
2, then the system (3)–(4) has only

one positive equilibria ðAi,FiÞ where

ðAi,FiÞ ¼
rf ra

2ðrcraþdf daÞ
,

rf rada

2raðrcraþdf daÞ

� �
3.
 If ao4bððrcraþdf daÞ=rarf Þ
2, then there is only one trivial

equilibrium: A¼0 and F¼0.

Therefore, the statement of Proposition 3.2 holds. &

Proof of Theorem 3.1. From Proposition 3.2, we know that for
any initial condition taken in R2

þ , the trajectory of the system
(3)–(4) is converging to an equilibrium point. If ao4b
ððrcraþdf daÞ=rarf Þ
2, then according to Proposition 3.2, the only

equilibrium of the system (3)–(4) is the origin (0,0). Therefore, we
can conclude that the system (3)–(4) has global stability at (0,0)
when ao4bððrcraþdf daÞ=rarf Þ

2. &

Proof of Theorem 3.2. From Proposition 3.2, we know that the
system (3)–(4) has two positive equilibria ðAi1,Fi1Þ and ðAi2,Fi2Þ

when a44bððrcraþdf daÞ=rarf Þ
2. The local stability can be deter-

mined from the eigenvalues of its Jacobian matrices evaluated at
these equilibria.

Assume that ðAn,FnÞ is an equilibrium point of (3)–(4), then its

Jacobian matrices evaluated at this equilibrium can be written as

follows:

J9
ðAn ,FnÞ

¼
�daAn raAn

daAn

ra
2 rcþ

dadf

ra


 �
1�An rc

rf
þ

dadf

rarf


 �
 �
�rc


 �
�

dadf An

ra

" #
ð6Þ

Then we have

traceðJ9
ðAn ,FnÞ
Þ ¼ �daAn

raþdf

ra
o0

detðJ9
ðAn ,FnÞ
Þ ¼

daðAnÞ
2
ðrarcþdadf Þð2rarcAn�rarf þ2dadf AnÞ

r2
a df

:

This implies that if An4rarf =2ðrarcþdadf Þ, then ðAn,FnÞ is locally

asymptotically stable; while if Anorarf =2ðrarcþdadf Þ, then ðAn,FnÞ

is a saddle node, i.e., unstable. Since

Ai1 ¼
rf ra

2ðrcraþdf daÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rf ra

2ðrcraþdf daÞ

� �2

�
b

a

s
o

rarf

2ðrarcþdadf Þ

Ai2 ¼
rf ra

2ðrcraþdf daÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rf ra

2ðrcraþdf daÞ

� �2

�
b

a

s
4

rarf

2ðrarcþdadf Þ

Therefore, ðAi1,Fi1Þ is always unstable and ðAi2,Fi2Þ is always locally

asymptotically stable when a44bððrcraþdf daÞ=rarf Þ
2. &

Proof of Theorem 3.3. If ao4bððrcraþdf daÞ=rarf Þ
2, then according

to Theorem 3.1, (0,0) is global stable in R2
þ , thus it is locally

asymptotically stable. Now we need to consider the case that
a44bððrcraþdf daÞ=rarf Þ

2.

First, we claim that the region defined by

O1 ¼ ðA,FÞAR
3 2

þ :
rf aA2

df ðbþaA2
Þ
�

rcA

df
rFr

daA

ra

( )

is positively invariant. Assume that this is not true. Then there

is some initial condition ðAð0Þ,Fð0ÞÞ taken in O1 such that for

some future time T such that ðAðTÞ,FðTÞÞ is leaving O1. From

Proposition 3.2, we know that the system (3)–(4) has only one

equilibrium point ðAi1,Fi1Þ in O1, thus due to the continuity of the

system, there exists some time T such that we have one of the

following two cases:
1.
 For all 0otoT ,

rf aA2
ðtÞ

df ðbþaA2
ðtÞÞ
�

rcAðtÞ

df
oFðtÞo

daAðTÞ

ra

at t¼T,

rf aA2
ðTÞ

df ðbþaA2
ðTÞÞ
�

rcAðTÞ

df
¼ FðTÞ and FðTÞo

daAðTÞ

ra
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and for some e40 and TotoTþe, we have

rf aA2
ðtÞ

df ðbþaA2
ðtÞÞ
�

rcAðtÞ

df
4FðtÞ and FðtÞo

daAðTÞ

ra
2.
 For all 0otoT,

rf aA2
ðtÞ

df ðbþaA2
ðtÞÞ
�

rcAðtÞ

df
oFðtÞo

daAðTÞ

ra

at t¼T,

rf aA2
ðTÞ

df ðbþaA2
ðTÞÞ
�

rcAðTÞ

df
oFðTÞ and FðTÞ ¼

daAðTÞ

ra

and for some e40 and TotoTþe, we have

FðtÞ4
daAðtÞ

ra
If the first case holds, then at time t¼T we have

dA

dt

����
t ¼ T

¼ ðraFðTÞ�daAðTÞÞAðTÞ ¼ 0

dF

dt

����
t ¼ T

¼
rf aA2

ðTÞ

bþaA2
ðTÞ
�df FðTÞ�rcAðTÞ

 !
FðTÞo0

This implies that there exists some small e such that AðtÞrAðTÞ,
FðtÞoFðTÞ for all TotoTþe, which contradicts the conditions for
the first case. Similarly, we can show it is impossible for the
second case to be held. Therefore, O1 is positively invariant.

Now we will show that Bð0;0Þ is positively invariant. Define

O2 ¼ Bð0;0Þ\O1 and O3 ¼O1\ ðA
i1,Fi1Þ

n o
:

Then, O3 is also positively invariant since ðAi1,Fi1Þ is an equili-

brium point and Bð0;0Þ ¼O2 [O3. For any initial condition ðAð0Þ,

Fð0ÞÞ taken in Bð0;0Þ, there are the following two cases:
1.
 If ðAð0Þ,Fð0ÞÞAO3, then ðAðtÞ,FðtÞÞAO3 for all t40 since O3 is
positively invariant.
2.
 If ðAð0Þ,Fð0ÞÞAO2, then either ðAðtÞ,FðtÞÞAO2 for all t40 or
there exists some T such that

dA

dt

����
t ¼ T

¼ ðraFðTÞ�daAðTÞÞAðTÞ ¼ 0

dF

dt

����
t ¼ T

¼
rf aA2

ðTÞ

bþaA2
ðTÞ
�df FðTÞ�rcAðTÞ

 !
FðTÞo0

This implies that ðAðTÞ,FðTÞÞAO3. Since O3 is positively invar-
iant, then ðAðtÞ,FðtÞÞAO3 for all t4T .

Therefore, Bð0;0Þ is positively invariant.

Define a Lyapunov function V ¼ AaFb : Bð0;0Þ-R2
þ where both a

and b are positive. Then we have

dV

dt
¼ aAa�1Fb dA

dt
þbAaFb�1 dF

F dt
¼ aAaFbðraF�daAÞ

þbAaFb rf aA2

bþaA2
�df F�rcA

 !

¼ V a ra�
bdf

a

� �
Fþb

rf aA2

bþaA2
� rcþ

ada

b

� �
A

 !" #
Choose a,b such that ra�bdf =a¼ 0, i.e., b=a¼ ra=df , then the

expression of dV=dt can be simplified as

dV

dt
¼ V b

rf aA2

bþaA2
� rcþ

df da

ra

� �
A

 !" #

¼ bVA

rf aA�b rcþ
df da

ra

� �
�a rcþ

df da

ra

� �
A2

bþaA2

2
664

3
775

Define f ðAÞ ¼ rf aA�bðrcþðdf da=raÞÞ�aðrcþðdf da=raÞÞA2, then the

sign of dV=dt depends on the sign of f(A). Notice that f ðAÞ ¼

ðA�Ai1ÞðAi2�AÞ is negative if 0oAoAi1 and any point ðA,FÞABð0;0Þ
satisfying 0oAoAi1,0oFoFi1.

Since Bð0;0Þ is positively invariant, for any initial condition taken

in Bð0;0Þ, we have dV=dto0 for all future time. This indicates that

A(t) and F(t) approach to some fixed point contained in Bð0;0Þ (the

closure of Bð0;0Þ). Notice that Bð0;0Þ contains only ð0;0Þ and ðAi1,Fi1Þ.

According to Theorem 3.2, ðAi1,Fi1Þ is unstable when a44bððrcraþ

df daÞ=rarf Þ
2. Then based on Hartman–Grobman Theorem

(Robinson, 1998), any point in Bð0;0Þ\SðAi1 ,Fi1Þ will not approach to

ðAi1,Fi1Þ, and therefore, it will approach to (0,0).

Therefore, the statement of Theorem 3.3 holds. &
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Appendix

The detailed results on sensitivity analysis for each parameter
and the initial condition can be summarized as follows:
1.
 Fig. 3(a) shows that the growth parameters ra and rf have a
positive effect on the model as a function of time; as the model
progresses, ra and rf have a larger effect on the increase of both
biomass of ants and fungus. The largest effect of both ra and rf on
biomass of fungus occurs at week 25, while the effect of both ra

and rf on biomass of ants is an increasing function of time and
achieves the largest effect at the end of experiment, i.e., week 29.
2.
 Fig. 3(b) shows that the death parameters da and df have a
negative effect on the model as a function of time. As the
model progresses forward in time the decrease in the biomass
of ants and fungus respectively is increasingly affected by
parameters da and df. The largest effect of ra and rf on biomass
of fungus occurs at weeks 25 and 26 respectively while the
effect of both da and df on biomass of ants is an increasing
function of time and achieves the largest effect at the end of
experiment, i.e., week 29.
3.
 Fig. 3(c) shows the conversion rate between ants and fungus rc

has a negative effect on the output of the model while the
measurement of the division of labor of ants has a positive
effect. The effect of rc on the biomass of both ants and fungus is
a decreasing function of time while the division of labor
parameter a shows very similar behavior to the growth
parameters ra and rf; this suggests that by maximizing the
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efficiency of division of labor, both the ants’ and fungus’s
population growth will be maximized. This agrees with paper
main purpose number 2.
4.
 Fig. 4(a) shows that both initial condition Að6Þ and Fð6Þ have
positive effects on the model as a function of time. The effect of
Að6Þ on biomass of both ants and fungus is an increasing
function of time. The effect of Fð6Þ on the biomass of ants is an
increasing function of time while the effect on the biomass of
fungus is decreasing until week 15 and then increasing until
week 29.
5.
 Fig. 4(b) shows that the half-saturation constant b has a
negative effect on the model as a function of time. As the
model progresses forward in time, the decrease in biomass of
ants and fungus respectively is increasingly affected by b. The
largest effect of b on fungal biomass occurs at week 25 while
the effect of b on biomass of ants is an increasing function of
time and achieves the largest effect at the end of experiment,
i.e., week 29. Notice that b has the largest sensitivity among all
the parameters and initial conditions.
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